Rare Charm at LHCb

Dominik Mitzel

TU Dortmund On behalf of the LHCb Collaboration

11th workshop on "Implications of LHCb measurements and future prospects"

21/10/2021

Rare charm in the SM

- unique probe of up-type quark FCNC & complementary to B and K physics!
 - almost exact GIM-cancellation in $\Delta c = \Delta u = 1$ processes

extremely suppressed rates

non resonant (incl. $D \rightarrow X\ell^+\ell^- < \mathcal{O}(10^{-10})$ resonant contributions $\mathcal{O}(10^{-7} - 10^{-6})$

- negligible CP asymmetries
 - $\operatorname{Im}(V_{cb}^* V_{ub} / V_{cd}^* V_{ud}) \sim 10^{-3} \left(A_{CP} \sim 0 \right)$
- specific angular distributions

 $(C_{10}^{(\prime)}=0) \rightarrow$ parity conservation

- exploit (approximate) symmetries to test the SM with clean null-tests:
 - searches for extremely rare and forbidden decays
 - CP asymmetries and angular distributions of resonance-dominated SL decays

New physics searches at LHCb

branching ratios, especially regions away from the resonances • search for $D^0 \rightarrow \mu^+\mu^-$ [PLB 725 15-24 (2013)] • D $^0 \rightarrow \pi^+\pi^-V(\mu^+\mu^-)$ $D^0 \rightarrow K^+K^-V(\mu^+\mu^-)$	QWA	10 ⁻⁶ 10 ⁻⁸
 search for D+(s) → h+l+l- [PLB 724 203-212 (2013)] [JHEP 06 44 (2021)] search for Λ_c+→pµ+µ⁻ [PRD 97 091101 (2018)] search for D⁰ → π+π-µ+µ⁻ [PLB 728 234-243 (2014)] observation of D⁰ → h-h(')+ V(µ+µ⁻) [PLB 757 558-567 (2016)], [PRL 119, 181805 (2017)] 		10 ⁻⁹
null tests based on (approximate) symmetries• lepton-flavor/number-violation• search for $D^0 \rightarrow \mu^+e^-$ [PLB 754 167 (2016)]• search for $D^+(s) \rightarrow h^-l^+l(')^+, D^+(s) \rightarrow h^+\mu^\pm e^\mp$ [JHEP 06 44 (2021)]	FCNC	1 0 ⁻¹²
angular observables and CP asymmetries	BNV	10 -15
• angular analysis and search for CPV in $D^0 \rightarrow h^+h^-\mu^+\mu^-$ [PRL 121 091801 (2018)], [LHCb-PAPER-2021-035] $D^+(s) \rightarrow h^-\mu^+\mu^+$ $D^0 \rightarrow e^\pm \mu^{\mp}$	'V' INV'	0

"Angular analysis of $D^0 \to \pi^- \pi^+ \mu^+ \mu^-$ and $D^0 \to K^- K^+ \mu^+ \mu^-$ decays and search for CP violation"

LHCb-PAPER-2021-035 in preparation For the first time shown today!

$D^0 \rightarrow h^+ h^- \mu^+ \mu^-$ decays at LHCb

• rarest charm meson decays observed, dominated by resonant contributions

 $\mathcal{B}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) \sim 9.6 \times 10^{-7}$ $\mathcal{B}(D^0 \to K^+ K^- \mu^+ \mu^-) \sim 1.5 \times 10^{-7}$

PRL 119 (2017) 181805

- measurement selected angular and CP asymmetries with 5/fb consistent with SM PRL 121 (2018) 091801
- TODAY: First full angular analysis with 9/fb from 2011-2018 LHCb-PAPER-2021-035
 - select D⁰ from flavour sepecific D*+→ D⁰π⁺ decays

 $N(D^{0} \to \pi^{+}\pi^{-}\mu^{+}\mu^{-}) \sim 3500$ $N(D^{0} \to K^{+}K^{-}\mu^{+}\mu^{-}) \sim 300$

Differential decay rate

LHCb-PAPER-2021-035 in preparation

• measure p^2 , $\cos \theta_h$ integrated* observables $\langle I_i \rangle$ separate for D^0 and $\overline{D^0}$

$$\langle I_{2,3,6,9} \rangle (q^2) = \frac{1}{\Gamma} \int_{4m_h}^{p_{max}^2} dp^2 \int_{-1}^{1} d\cos\theta_h \ I_{2,3,6,9}$$

$$\langle I_{4,5,7,8} \rangle (q^2) = \frac{1}{\Gamma} \int_{4m_h}^{p_{max}^2} dp^2 \left[\int_{-1}^{0} d\cos\theta_h - \int_{0}^{1} d\cos\theta_h \right] \ I_{4,5,7,8}$$

*optimal for p-Wave in hadron system

Measured observables and binning

LHCb-PAPER-2021-035 in preparation

• report flavour average $\langle S_i \rangle$ and CP asymmetries $\langle A_i \rangle$

updated measurement of A_{CP}

$$A_{CP} = \frac{\Gamma(D^0 \to h^+ h^- \mu^+ \mu^-) - \Gamma(\overline{D}{}^0 \to h^+ h^- \mu^+ \mu^-)}{\Gamma(D^0 \to h^+ h^- \mu^+ \mu^-) + \Gamma(\overline{D}{}^0 \to h^+ h^- \mu^+ \mu^-)}$$

17 obs./channel [12 SM null-tests] in m(μ⁺μ⁻) regions
 ["resonance enhanced NP effects"]

	$m(\mu^+\mu^-) \left[\mathrm{MeV}/c^2\right]$								
Decay mode	low mass	η	$ ho_{I}$	$/\omega$		ϕ	high mass		
$D^0 \rightarrow K^+ K^- \mu^+ \mu^-$	< 525	NS	5 > 565		> 565		N	VА	NA
$D^0 \to \pi^+ \pi^- \mu^+ \mu^-$	< 525	NS	565-780	780-950	950-1020	1020-1100	NS		

Experimental strategy

measure angular observables via yield asymmetries, eg:

$$\langle I_6 \rangle = \frac{1}{\Gamma} \left[\int_0^1 d\cos\theta_\mu - \int_{-1}^0 d\cos\theta_\mu \right] \frac{d\Gamma}{d\cos\theta_\mu} \langle I_6 \rangle = \frac{N(\cos\theta_\mu > 0) - N(\cos\theta_\mu < 0)}{N(\cos\theta_\mu > 0) + N(\cos\theta_\mu < 0)}$$
[see LHCb-PAPER-2021-035 for others]

- correct for acceptance effects across the 5D phase space
- $m(\pi^+\pi^-)$ [MeV/ c^2] $D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ 1.6 1.4 1.2 1000 0.8 -0.6500 -0.4-0.2٦0 500 1000 1500 $m(\mu^{+}\mu^{-})$ [MeV/ c^{2}] PRL 121 (2018) 091801

correct A_{CP} for nuisance asymmetries

$$A_{CP}^{raw}(f) = \frac{N(D^{*+} \to D^{0}(\to f)\pi^{+}) - N(D^{*-} \to \overline{D^{0}}(\to f)\pi^{-})}{N(D^{*+} \to D^{0}(\to f)\pi^{+}) + N(D^{*-} \to \overline{D^{0}}(\to f)\pi^{-})} \approx A_{CP} + A_{d}(\pi^{\pm}) + A_{p}(D^{*\pm})$$

• evaluate systematic uncertainties

Typically
$$\frac{\sigma_{sys}}{\sigma_{stat}} \sim (10 - 50)\%$$

limited by statistics!

1.8

LHCb simulation

$$[\text{use } D^{*+} \to D^0 (\to K^+ K^-) \pi^+ \text{ decays}]$$

1500

Flavour-averaged observables $\langle S_i \rangle$

LHCb-PAPER-2021-035 in preparation

• Shown examples: SM null tests $\langle S_{5,6,7} \rangle [\langle S_6 \rangle \sim A_{FB}]$

 all observables in <u>backup</u>, tabulated version & correlation matrices in LHCb-PAPER-2021-035

CP asymmetries $\langle A_i \rangle$

10

• Shown: $\langle A_6 \rangle [\langle A_6 \rangle \sim A_{FB}^{CP}]$, $\langle A_{8,9} \rangle$ [triple-product-asym.] & A_{CP} [others in <u>appendix</u>]

Summary & outlook

- Rare charm is a unique and complementary field to look for NP
- LHCb is making major contributions
 - most measurements report world's best result
 - we hold the record for the rarest charm decays to date...
 - ...and presented first angular analysis in the field today!
 - new analyses and updates will come exploring the full Run 2 data set
 - eg: updated/new searches for $D_{+(s)} \rightarrow h_{+}I_{+}I_{-}$, $\Lambda_{c}^{+} \rightarrow p\mu^{+}\mu^{-}$, $D^{0} \rightarrow h^{+}h^{+}e^{+}e^{-}$, $D^{0} \rightarrow \mu^{+}\mu^{-}$ very soon! (~limit few 10⁻⁹)

• all analyses statistically limited \rightarrow great prospects for the upgrade!

More? Check out Marcel's talk and MPLA 36 (2021) 2130002

11

Thank you

Flavour-averaged observables

Flavour-averaged observables

LHCb-PAPER-2021-035 in preparation

CP asymmetries $\langle A_i \rangle$

Hadron spectra

Search for 25 rare and forbidden decays ¹⁸

Mode	Upgrade (50 ${ m fb}^{-1}$)	Upgrade II (300 ${ m fb}^{-1}$)
$D^0 ightarrow \mu^+ \mu^-$	$4.2 imes 10^{-10}$	$1.3 imes10^{-10}$
$D^+ o \pi^+ \mu^+ \mu^-$	10 ⁻⁸	$3 imes10^{-9}$
$D_s^+ ightarrow K^+ \mu^+ \mu^-$	10 ⁻⁸	$3 imes 10^{-9}$
$\wedge \rightarrow p \mu \mu$	$1.1 imes10^{-8}$	$4.4 imes10^{-9}$
$D^0 ightarrow e \mu$	10 ⁻⁹	$4.1 imes10^{-9}$

Mode	Upgrade (50 ${ m fb}^{-1}$)	Upgrade II (300 ${ m fb}^{-1}$)		
$D^+ o \pi^+ \mu^+ \mu^-$	0.2%	0.08%		
$D^0 ightarrow \pi^+\pi^-\mu^+\mu^-$	1%	0.4%		
$D^0 ightarrow K^- \pi^+ \mu^+ \mu^-$	0.3%	0.13%		
$D^0 ightarrow K^+ \pi^- \mu^+ \mu^-$	12%	5%		
$D^0 ightarrow K^+ K^- \mu^+ \mu^-$	4%	1.7%		

A. Contu, Towards the Ultimate Precision in Flavour Physics, Durham, United Kingdom, 2 - 4 Apr 2019